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A B S T R A C T

γ-Valerolactone (GVL) is a promising bio-based chemical with applications in renewable fuels and chemicals. 
While several catalytic strategies for its production exist, a common challenge is the lack of an integrated process 
that combines both production and purification. Currently, these steps are performed separately, with distillation 
being energy-intensive, especially at low yields. This study presents a novel approach by integrating both pro
duction and purification of GVL in a single, energy-efficient operation using reactive distillation.The novelty of 
this work lies in the design and optimization of a reactive distillation column, where key operating conditions 
and design parameters are carefully selected to ensure that both chemical reactions and component purification 
occur efficiently within the same unit. Experimental data from the literature were used to model the process 
kinetics, ensuring the simulation accurately reflects experimental conditions. This integrated approach not only 
reduces energy consumption but also improves the overall efficiency of GVL production, offering a more sus
tainable and cost-effective alternative for industrial applications. By employing a multiobjective optimization 
framework, the design balances economic, environmental, and operational objectives, achieving a reduction in 
total annual cost (TAC) to 43 % and environmental impact (Eco Indicator 99, EI99) to 45 % of the values 
associated with conventional processes. Moreover, energy consumption is decreased by 63 %, and GVL pro
duction is increased by 25 %, demonstrating the significant potential of reactive distillation for improving both 
efficiency and sustainability.

1. Introduction

The advent of Industry 4.0, characterized by the integration of digital 
technologies, automation, and smart systems, is transforming 
manufacturing processes. This paradigm focuses on using cyber-physical 
systems, the Internet of Things (IoT), and big data analytics to create 
efficient, interconnected, and flexible production environments. As 
sustainability and circular economy principles become increasingly 
important, there is a need for processes that minimize environmental 
impact and optimize resource use. By combining Industry 4.0 technol
ogies with sustainability goals, this study proposes an intensified solu
tion that reduces energy consumption and environmental impact, 
contributing to a more resilient industrial future (Lasi et al., 2014).

Traditional industrial processes, such as the production of biofuels 

like bioethanol and biobutanol, face significant challenges in terms of 
economic feasibility. The inefficiencies in these processes, including low 
yields in fermentation and high energy consumption in purification, 
have made them less competitive compared to fossil fuel-based alter
natives (Pereira et al., 2024). This has prompted a shift in focus towards 
the development of alternative bio-based chemicals and materials that 
can offer higher value and align with the principles of sustainability and 
industry 4.0 (Kabugo et al., 2020). The pursuit of high value-added 
products derived from biomass, such as bioplastics, specialty chem
icals, and bio-based solvents, is gaining traction as these materials can 
be produced more efficiently and sustainably using advanced 
manufacturing technologies (Lasi et al., 2014).

One such promising bio-based chemical is γ-valerolactone (GVL), a 
versatile compound that can be synthesized from plant biomass 
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components through catalytic hydrogenation of levulinic acid. In 2023, 
the Gamma Valerolactone market was valued at USD 535 million, and it 
is anticipated to grow to USD 590 million by 2030, with a compound 
annual growth rate (CAGR) of 1.3 % throughout the forecast period of 
2024–2030 (Verified Market Reports, 2023). GVL has garnered signifi
cant attention for its applications as a biofuel additive, solvent, and 
precursor for various chemicals, making it an attractive candidate 
within the framework of Industry 4.0 (Kumaravel et al., 2021). For 
instance, GVL is used as a green solvent in the pharmaceutical and fine 
chemical industries, providing a more sustainable alternative to tradi
tional solvents. As a biofuel additive, it enhances fuel stability and en
ergy density, contributing to improved fuel performance. Additionally, 
GVL serves as a precursor for the production of pentanoic acid and 
valeric biofuels, which are highly valued for their energy content and 
compatibility with existing fuel infrastructure (Arias et al., 2023).

γ-Valerolactone (GVL), a renewable bio-based compound, has gained 
significant attention due to its versatility as both a solvent and a pre
cursor for biofuels. Its broad applicability in various sectors, including 
chemical synthesis and energy production, underscores the growing 
need for efficient methods to produce GVL from biomass. This section 
explores the role of GVL as a solvent and its potential as a biofuel, 
highlighting the importance of GVL in addressing the challenges of 
sustainability and the reduction of fossil fuel dependency.

GVL has shown considerable promise as a green solvent due to its 
renewable nature, low toxicity, and excellent solvency properties for a 
range of organic and inorganic compounds. It has been recognized for its 
ability to replace more harmful organic solvents commonly used in in
dustrial applications. (Horváth et al., 2008) first proposed the use of GVL 
as a sustainable solvent in biomass conversion processes, noting its 
biodegradability, stability, and low toxicity, which make it an ideal 
candidate for a variety of chemical reactions. Furthermore, GVL has 
been found to effectively dissolve a wide range of biomass feedstocks, 
which makes it particularly useful in biomass conversion to valuable 
chemicals. Recent research has expanded on this idea, with 
(Fegyverneki et al., 2010) exploring several GVL-derived chemicals that 
could be utilized as solvents in various industrial applications, such as 
alkyl 4-alkoxyvalerates and GVL-derived ionic liquids. These GVL-based 
solvents exhibit higher performance in reactions like olefin hydroge
nation compared to traditional ionic liquids, significantly improving 
reaction selectivity and catalyst turnover rates. In addition, (Strádi et al., 
2013) demonstrated that the hydrogenation of olefins in GVL-based 
ionic liquids offers a faster and more efficient reaction process, 

highlighting the solvent’s utility in advanced chemical processing. The 
potential applications of GVL as a solvent are vast, ranging from the 
extraction of valuable bio-based chemicals to facilitating catalytic re
actions that are vital for green chemistry. As an alternative to conven
tional solvents, GVL’s ability to enhance reaction rates and improve 
catalyst stability positions it as a key player in the transition toward 
more sustainable chemical processes.

Beyond its role as a solvent, GVL also serves as a precursor for bio
fuels, particularly in the context of renewable and sustainable energy. 
GVL can be converted into high-energy fuels and fuel additives, offering 
a promising alternative to traditional fossil-based fuels. Horváth et al. 
(2008) first recognized GVL as a potential oxygenate for gasoline and 
diesel fuels, noting its favorable properties such as lower vapor pressure 
and higher energy density compared to ethanol, which is commonly 
used as a fuel additive. GVL’s potential as a fuel additive has been 
further demonstrated by (Bruno et al., 2010), who investigated the 
distillation characteristics of GVL in gasoline and found that it could be 
blended effectively to improve fuel properties. GVL not only enhances 
fuel stability but also reduces emissions, such as CO and smoke, in 
automobile exhaust. Furthermore, (Lange et al., 2012) explored the 
conversion of GVL to methyl tetrahydrofuran (MTHF), a biofuel that can 
be blended with gasoline, achieving a high octane number and making it 
suitable for use as a renewable fuel.

In addition to GVL, its derivatives, such as valeric acids and valer
ates, have also been studied as potential biofuels. Lange et al. (2012)
demonstrated that these compounds, derived from GVL, can be used as 
oxygenates in gasoline and diesel fuels, enhancing fuel performance and 
combustion efficiency. Their high energy content and ability to be 
tailored for specific applications (e.g., by adjusting their alkyl chain 
length) make them valuable for the biofuel industry. For instance, ethyl 
valerate has shown promising results as a gasoline additive, and pentyl 
valerate is more suitable for diesel applications due to its better volatility 
and cold-flow properties. The catalytic upgrading of GVL to various fuel 
products, such as butenes and C8 + alkenes, has also been explored. 
Alonso et al. (2013) developed an integrated catalytic system where GVL 
is first converted to unsaturated pentenoic acids and then to butenes, 
which can be further oligomerized into high-value jet fuels. This process, 
which eliminates the need for high-pressure hydrogen, demonstrates the 
feasibility of producing liquid fuels directly from biomass-derived GVL.

As the demand for sustainable and renewable energy sources con
tinues to rise, the role of GVL in both chemical synthesis and fuel pro
duction becomes increasingly critical. GVL’s versatility as a solvent and 

Fig. 1. Simplified flowsheet for GVL production considering different hydrogen sources.
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as a precursor for biofuels positions it as a key building block for future 
sustainable chemical processes. Its potential to replace fossil fuels in 
various applications, combined with its environmentally friendly prop
erties, makes GVL an attractive option for industries looking to reduce 
their carbon footprint and transition to greener alternatives.

γ-Valerolactone (GVL) has emerged as a promising platform chemi
cal derived from biomass, with applications in green solvents, biofuels, 
and other chemical industries. The production of GVL involves the se
lective hydrogenation of levulinic acid (LA) or its esters, with various 
hydrogen sources being employed to drive the reduction reactions. 
These hydrogen sources can be categorized into three main types: 
external molecular hydrogen (H2), alcohols, and formic acid (FA). Each 
of these sources has its own advantages and disadvantages, particularly 
in terms of efficiency, cost, and the complexity of the reaction system.

The use of external molecular hydrogen (H2) as a hydrogen source 
for the production of GVL is the most common method (See Fig. 1). 
Several studies have explored this approach using heterogeneous and 
homogeneous catalytic systems. For instance, (Braca et al., 1991) 
employed Ru(CO)₄I₂ as a catalyst for the hydrogenation of LA to GVL, 
achieving a GVL yield of 39.5 % starting from glucose. Similarly, 
(Starodubtseva et al., 2005) used a RuII–BINAP–HCl system for the 
conversion of ethyl levulinate to GVL, reaching an impressive yield of 
95 %. More recently, (Delhomme et al., 2013) investigated the effect of 
various phosphine ligands on the catalytic activity, demonstrating a 
maximum GVL yield of 95 % under aqueous conditions.

Despite its effectiveness, the use of external H2 presents several 
drawbacks. Firstly, the requirement for a hydrogen gas supply under 
elevated pressures often results in higher operational costs. Addition
ally, the hydrogenation process may lead to the formation of unwanted 
by-products, which require further separation and purification steps. As 
a result, the process often demands high energy consumption for prod
uct recovery, especially if yields are low.

An alternative hydrogen source for GVL production involves the use 
of alcohols as H-donors. This approach, known as catalytic transfer 
hydrogenation (CTH), has gained attention for its potential to operate 
under milder reaction conditions compared to H2. Chia and Dumesic 
(2011) first reported the conversion of LA to GVL using ZrO₂ as a cata
lyst, achieving GVL yields over 80 % from alkyl levulinates. Yang et al. 
(2013) demonstrated the use of Raney Ni as a catalyst for the CTH of 
ethyl levulinate to GVL, with a yield of 99 % at room temperature using 
2-propanol as the hydrogen donor. The main advantages of alcohols as 
hydrogen sources are the relatively mild reaction conditions and the 
easier handling of alcohols compared to H2. However, one significant 
limitation of this approach is the potential for side reactions, such as 
over-hydrogenation, which can reduce the selectivity to GVL. Addi
tionally, alcohols tend to have lower hydrogenation potentials than 
molecular H2, which may require longer reaction times or higher tem
peratures to achieve comparable yields. Furthermore, the separation of 
alcohols from the reaction mixture can be challenging, particularly 
when dealing with large volumes of solvent.

The use of formic acid (FA) as a hydrogen source is an emerging 
strategy that has been identified as a promising alternative due to its 
high hydrogen content and the fact that it decomposes to produce 
hydrogen and CO2. FA can act as an in situ hydrogen donor, making the 
process more atom-efficient. For example, (Horváth et al., 2008) 
demonstrated a homogeneous catalytic system using [(η⁶-C₆Me₆)Ru 
(bpy)(H₂O)][SO₄] in an aqueous solution, which converted LA to GVL 
with a yield of 25 %. More recent developments have shown that FA can 
also be used in combination with other catalysts such as Ru/C to achieve 
complete conversions of LA to GVL, with yields up to 100 %. One of the 
key advantages of using FA is its ability to provide hydrogen in situ, 
eliminating the need for a separate hydrogenation step. This method is 
particularly advantageous in terms of cost and simplicity, as it does not 
require the use of high-pressure hydrogen gas. Additionally, FA can be 
directly derived from biomass, making it a renewable and sustainable 
hydrogen source. However, the presence of CO2 as a by-product can 

interfere with the reaction, reducing the overall efficiency of the process. 
Nevertheless, FA’s ability to serve as both a hydrogen donor and a 
carbon source for subsequent reactions makes it a highly versatile and 
efficient alternative.

Process Intensification (PI) offers a pathway to enhance the effi
ciency of GVL production by improving catalyst performance and 
reducing energy consumption, which are key objectives within the 
sustainability framework (López-Guajardo et al., 2022). Strategies such 
as the use of high-efficiency reactive distillation columns can signifi
cantly lower energy requirements while optimizing reaction conditions 
and heat transfer, making GVL production more compatible with the 
goals of smart manufacturing (Demirel and Rosen, 2023). This tech
nique combines chemical reaction and distillation into a single unit 
operation, allowing for continuous product removal and driving re
actions to completion. The integration of these processes into a smart, 
automated system is particularly beneficial for equilibrium-limited re
actions and processes involving volatile reactants and products. Reac
tive distillation has shown substantial advantages in various 
applications, such as biodiesel production and the synthesis of bio
compounds, by increasing conversion rates and reducing energy 
consumption.

In several research reports, reactive distillation has shown significant 
advantages. For example, the production of biodiesel via the trans
esterification of vegetable oils or animal fats with methanol is greatly 
improved by reactive distillation. Traditional methods require separate 
reaction and purification steps, leading to higher energy consumption 
and lower yields. Reactive distillation, on the other hand, can increase 
the overall conversion rate by 20–30 % while reducing energy con
sumption by approximately 40 % compared to conventional technolo
gies (Kiss et al., 2006). Given the energy-intensive nature of GVL 
production, implementing reactive distillation could similarly yield 
substantial improvements in efficiency and sustainability. While several 
catalytic strategies for GVL production have been proposed, a common 
challenge remains the need for an efficient and integrated process that 
combines production and purification in a single unit. Currently, the 
production of GVL is followed by a separate purification step, which is 
energy-intensive, especially when the yields are low. Distillation, for 
instance, is often used to separate GVL from the reaction mixture, but 
this step requires significant energy input to overcome the boiling point 
differences between GVL and other components. To date, no published 
study has demonstrated the use of a reactive distillation column for the 
simultaneous production and purification of GVL in a single unit oper
ation. This represents a significant gap in the literature and highlights 
the novelty of the current work, which aims to integrate both production 
and purification into a single, energy-efficient step using reactive 
distillation.

Although the development of a reactive distillation model may 
appear straightforward, a crucial aspect from a process design 
perspective is identifying the valid operating window for the column 
and determining the appropriate design parameters. These parameters 
must be carefully selected to ensure that the reactive distillation column 
operates within a temperature and pressure range similar to those in a 
conventional reactor. Additionally, the operating conditions must be 
established in such a way that allows for the purification of the com
ponents obtained in a distinct region of the column. In other words, the 
design parameters and operating conditions must guarantee both the 
desired chemical reaction and the purification of at least one of the 
components produced. Furthermore, in this design exercise, experi
mental data presented in the literature were modeled to derive the ki
netic parameters necessary for replicating the behavior observed under 
experimental conditions. This approach ensures that the model can 
accurately simulate the process under realistic operational conditions 
and provide valuable insights for optimizing the reactive distillation 
process for GVL production.

Thus, the purpose of this article is to propose a sustainable and 
intensified process alternative for the production of GVL. This proposal 
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has as its core process a reactive distillation column, an intensified 
process that has not been previously used for GVL production. To 
generate a fair comparison, the intensified scheme will be compared 
with its previously reported conventional counterpart (Caceres et al., 
2024). This work was developed under a multi-objective optimization 
scheme to evaluate objective functions that promote the generation of 
sustainable schemes, for example, the total annual cost (TAC), and an 
environmental impact indicator (Eco Indicator 99).

2. Problem statement

Biocompounds, derived from renewable biomass, offer a promising 
alternative to petrochemical-based products. However, the production 
of biocompounds using conventional processes is often energy-intensive, 
which can diminish their environmental benefits. Typically, this kind of 
process involves several stages, including feedstock pretreatment, 
chemical or biochemical conversion, and product separation and 
purification.

For example, biomass feedstocks require pretreatment to enhance 
their convertibility. Methods such as steam explosion, acid hydrolysis, 
and mechanical grinding are commonly employed. For example, the 
steam explosion of lignocellulosic biomass can consume up to 15 % of 
the total process energy (Alvira et al., 2010). In chemical or biochemical 
conversion, the pretreated biomass is converted into desired bio
compounds through chemical reactions or microbial fermentation. 
Maintaining optimal conditions for these reactions, such as temperature, 
pressure, and pH, involves significant energy use. The fermentation of 
glucose to ethanol, for instance, consumes around 10–15 % of the total 
process energy (Gnansounou and Dauriat, 2005). Regarding the purifi
cation step, distillation is a widely used method for the separation and 
purification of biocompounds. This step is particularly energy-intensive 
due to the need to vaporize large volumes of liquid. In the case of ethanol 
production, distillation accounts for approximately 35–40 % of the total 
energy consumption (MacRelli et al., 2012)

PI involves the development and implementation of innovative ap
paratuses and techniques that lead to significant improvements in 
manufacturing and processing efficiency. By integrating operations and 
enhancing process phenomena, PI can dramatically reduce equipment 
size, energy consumption, and waste production. There is an urgent 
need to explore intensified production strategies for various bio
compounds that are currently economically feasible only through con
ventional methods or the use of non-renewable raw materials. The 
successful implementation of PI not only supports the transition to 
renewable feedstocks but also aligns with the broader goals of sustain
able development by promoting energy efficiency, reducing environ
mental impact, and enhancing the economic viability of bio-based 
products (Charpentier, 2010).

3. Case study

In the context of GVL production, several production alternatives 
have been explored at different scales. Recently, Hegne and Rode 
(Hengne and Rode, 2012) proposed a study focusing on the production 
of γ-valerolactone (GVL) from levulinic acid (LA) using a Cu–ZrO₂ 
nanocomposite catalyst. The catalyst demonstrated impressive perfor
mance, achieving complete conversion of LA with over 90 % selectivity 
to GVL. The hydrogenation process was typically carried out under 
specific conditions: a temperature of 473 K, and a hydrogen pressure of 
3–4 MPa. Cu–ZrO₂ catalyst was noted for its excellent recyclability, 
showing minimal metal leaching, which enhances its sustainability for 
commercial applications

Due to its high conversion and performance, in a later work, Cacer
es-Barrera et al. (2024) reported on its implementation in a 
multi-product production plant of GVL as a stage of the overall process 
using biomass to generate levulinic acid, furfural, and hydrox
ymethylfurfural. In the case of this work, the production of all bio
compounds is carried out using conventional technologies (reactors and 
columns), so there is a latent opportunity for process improvement using 
process intensification strategies. Previously, the work presented by 
Caceres-Barrera et al. proposed the production of GVL from a feed 
stream of 3.98 kmol/h of levulinic acid, 4.21 kmol/h of formic acid, and 
4.21 kmol/h of water; to obtain 2.95 kmol/h of GVL (see Fig. 3). As 
reported by Caceres et al.(2024), the energy consumption of the 
equipment involved in the production of GVL is 22.964 kcal/h, which 
represents 41 % of the total energy consumption of the process. Thus, 
based on the process step where GVL is produced previously reported by 
Caceres et al. (2024), a process intensification strategy will be applied to 
generate a reactive distillation column (Fig. 2) as an intensified alter
native as an immediate substitute to the reactor and column shown in 
Fig. 1. Note that a feed similar to the work of Caceres et al. (2024) will be 
considered, however the operation in the proposal of this work will be 
performed only on a single reactive distillation column, not in three as 
previously proposed.

3.1. Performance assessment

To generate a fair evaluation, it is necessary to evaluate both pro
duction alternatives (conventional and intensified) in a similar frame
work. The previous proposal (Caceres et al., 2024) evaluated the entire 
process using two indicators, one economic and the other environmental 
impact. This assessment was developed in a stochastic optimization 
framework. In the same way, in this work, the intensified proposal will 
be evaluated using a similar strategy. This stochastic optimization 
strategy will be explained in more detail in Section 4.

Evaluating the Total Annual Cost (TAC) is a key aspect in assessing 
the financial performance of a process, particularly in the context of 
Industry 4.0. This framework, which integrates advanced technologies, 
automation, and data analytics, calls for a deeper understanding of long- 

Fig. 2. Process intensification applied to GVL production.
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term financial implications. TAC analysis goes beyond the initial capital 
investment, offering insights into operational efficiencies and potential 
savings over time. By examining TAC, businesses can optimize resource 
management, reduce operational inefficiencies, and improve profit
ability in a more sustainable manner. For this study, we employed the 
cost estimation methodology proposed by Guthrie (1969) and applied 
the formula outlined by Turton (2001) to calculate the total cost of in
dustrial plant operations. The formula used is: 

TAC($/y) =

∑n

i=1
CTM, i

n
+
∑n

j=1
Cut,j (1) 

Where TAC represents the total annual cost, CTM stands for the capital 
cost of the plant, n signifies the payback period, and Cut represents the 
utility cost.

In parallel to TAC, the Eco-Indicator 99 (EI99) provides a compre
hensive tool for evaluating the environmental impacts of a process, 
which is essential in the Industry 4.0 paradigm focused on sustainability. 
EI99, a life cycle assessment (LCA) methodology, assesses environ
mental consequences across multiple categories such as global warming 
potential, resource depletion, and ecotoxicity. By integrating EI99 in the 
evaluation process, we ensure that the implementation of advanced 
technologies aligns with sustainability goals. The EI99 is calculated 
using the following equation: 

EI99 =
∑

b

∑

d

∑

k∈K

δdωdβbαb,k (2) 

Here, βb denotes the total quantity of chemical b released per unit of 
reference flow due to direct emissions, αb,k represents the damage caused 
by category k per unit of chemical b released into the environment, 
ωd is the weighting factor for damage in category d, and δd is the 
normalization factor for damage in category d. This approach considers 
the impact of steel used for construction, steam used for heating, and 
electricity used for pumping. The weighting factors are presented in 
Table 1.

4. Methodology

This section will describe the design and optimization strategy fol
lowed for the development of the intensified alternatives. In the 
particular case of the conventional alternative, the previous work re
ported an optimal scheme for the production and separation of GVL 
(Caceres et al., 2024). Thus, in such a proposal, the proposal previously 
presented was reproduced according to Table 2 and Fig. 3. Fig. 3 high
lights the section of the process where the generation of GVL is carried 
out. Please note that at the inlet of reactor R5, the feed contains a high 
proportion of levulinic acid and this reacts to produce mostly GVL.

Table 1 
Unit eco-indicator used to measure the eco-indicator 99 in both case studies 
(Goedkoop and Spriensma, 2000).

Impact category Steel (points/ 
kg)

Steam (points/ 
kg)

Electricity (points/ 
kWh)

Carcinogenics 6.32E− 03 1.18E− 04 4.36E− 04
Climate change 1.31E− 02 1.60E− 03 3.61E− 06
Ionizing 

radiation
4.51E− 04 1.13E− 03 8.24E− 04

Ozone depletion 4.55E− 06 2.10E− 06 1.21E− 04
Respiratory 

effects
8.01E− 02 7.87E− 07 1.35E− 06

Acidification 2.71E− 03 1.21E− 02 2.81E− 04
Ecotoxicity 7.45E− 02 2.80E− 03 1.67E− 04
Land Occupation 3.73E− 03 8.58E− 05 4.68E− 04
Fossil fuels 5.93E− 02 1.25E− 02 1.20E− 03
Mineral 

extraction
7.42E− 02 8.82E− 06 5.7EE− 6

Table 2 
Design parameters conventional design (Caceres et al., 2024).

Column C3 Reactor R5

Stages 39 Flow rate (l/min) 12.188
Feed Stage 22 Volume (m3) 0.731
Reflux ratio 0.039 Diameter (m) 0.677
Distillate flow (kmol/h) 7.296 Pressure (kPa) 101.32
Diameter (m) 0.992 Temperature (◦K) 473
Condenser Duty (Watt) − 91280 ​
Reboiler duty(Watt) 138022 ​
Height (m) 22.55 ​

Fig. 3. Mole balance of the conventional technology for GVL production.
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4.1. Determination of the kinetic parameters involved in the production of 
GVL

The production of GVL has been studied in several previous studies. 
Currently, there are several reports on experimental work where GVL is 
produced from levulinic acid. Particularly, in the work presented by 
Hengne and Rode (2012) the production of γ-valerolactone (GVL) from 
levulinic acid (LA) involves a two-step catalytic process: 

1. Hydrogenation of Levulinic Acid: The first step is the hydrogenation 
of levulinic acid to form 4-hydroxylevulinic acid (4-HLA). This re
action typically requires a catalyst, and various catalysts have been 
studied, including noble metals like ruthenium (Ru) and non-noble 
metal nanocomposites like Cu–ZrO₂. The hydrogenation is per
formed under specific conditions, such as elevated temperatures and 
pressures, to facilitate the reaction.

2. Cyclization of 4-Hydroxylevulinic Acid: The second step involves the 
cyclization of 4-hydroxylevulinic acid to form γ-valerolactone. This 
step can occur either homogeneously or heterogeneously, depending 
on the catalyst used. The cyclization process typically involves the 
removal of water, leading to the formation of the lactone structure of 
GVL.

The process is reported to be highly efficient, with a high percentage 
yield (99.9 %), and can be represented by the following equations. 

CH2O2→H2 +CO2 (3) 

C5H8O3 +H2→ C5H8O2+H2O (4) 

As mentioned, there is experimental support describing in detail the 
production of GVL in the work of (Hengne and Rode, 2012). However, 
no explicit kinetic data are reported.

In Process System Engineering (PSE), simulation plays a vital role. It 
involves both the creation of models and their refinement using exper
imental data. A simulation model is employed to perform ’virtual ex
periments.’ Modeling is a key component of any simulation, often 
embedded within software technology, making it almost invisible. It’s 
important to note that simulation provides an approximation of reality 
with a certain level of realism, but it is not reality itself (Thomé, 1993). 
One significant benefit is the capability to represent complex chemical 
reactions within an appropriate simulation framework. Several studies 
have recently been published where complex chemical reactions were 
modeled (Liu et al., 2022; Romero-Izquierdo et al., 2021). However, due 
to the challenges of fitting experimental data to reaction kinetics in a 
commercial simulation environment, simplified reactor models have 
been used. Given the kinetic complexity of many reactions, within the 
Aspen Plus simulator, there are a few alternatives to simulate reactions 
without detailed chemical kinetics data.

The study by Sánchez-Ramírez et al.(2022) introduced a general 
sequential optimization framework to address kinetic parameter esti
mation for simulating chemical reactions in the Aspen Plus process 
simulator. The primary goal was to identify the kinetic parameters E and 
K that accurately represent the experimentally observed behavior. The 
optimization problem focused on minimizing the discrepancy between 
the experimental data and the simulation results obtained from Aspen 
Plus.

4.2. Design and optimization of a reactive distillation column for GVL 
production

The methodology for optimizing reactive distillation column design 
combines empirical design heuristics with a robust stochastic optimi
zation approach, specifically the Differential Evolution with Tabu List 
(DETL) algorithm. This algorithm has shown its capabilities to 
adequately design and optimize highly nonlinear, potentially non
convex, multiple local minima process schemes. This evolutionary 
approach incorporates the traditional steps of Differential Evolution but 
enhances the search process through the use of a Tabu List (TL). 
Essentially, the integration of DE with TL prevents the algorithm from 
re-evaluating previously assessed points. A detailed explanation of the 
DETL algorithm is available in the work by Srinivas and Rangaiah 
(2017). A complete and wide description can be found at (Srinivas and 
Rangaiah, 2007a).

The process begins with a clear definition of the design objectives, 
which may include maximizing product purity, minimizing the total 
annual cost, and the environmental load. All this task was developed 
while also considering physical limits and constraints. Key design pa
rameters, such as column dimensions, catalyst type, number of stages, 
and feed conditions, are initially defined based on empirical heuristics 
and prior experience. Initial values for these parameters are set using 
well-established rules of thumb, which provide practical starting 
boundaries for the optimization process. The process design is developed 
in Aspen Plus, ensuring that the model accurately captures both the 
kinetic and thermodynamic behavior of the system. As mentioned, 
initial simulations are conducted using the empirically derived design 
values, serving as a baseline for subsequent optimization.

To achieve an effective design, it’s essential to have fundamental 
information about the chemical process. It’s important to remember that 
the primary benefits of reactive distillation (RD) lie in overcoming 
equilibrium constraints and improving selectivity for the desired prod
uct. Since both reaction and separation occur simultaneously within the 
same unit, the temperatures required for each process must be properly 
aligned. If there is no significant overlap between the operating condi
tions of reaction and separation, then combining these processes is not 
feasible (e.g., a high-pressure reaction cannot be paired with vacuum 
distillation). Additionally, working within the narrow window where 
reaction and separation conditions overlap is often a compromise rather 
than an optimal solution. Furthermore, the operating pressure and 
temperature should be kept away from the critical region of key com
ponents to avoid the formation of a supercritical phase. If the column 
operates near the critical pressure of key components, they may exist in 
the vapor phase, whereas, in most RD processes, the reaction occurs in 
the liquid phase. The relative volatility of key components is also a vital 
factor in determining the feasibility of RD. The temperature dependence 
of the vapor pressure of individual components can lead to reduced 
relative volatility as temperature increases in multicomponent systems, 
potentially creating a mismatch between the favorable temperatures for 
reaction kinetics and relative volatilities, making the RD process less 
attractive (Shah et al., 2012).

The multi-objective optimization is carried out using a hybrid system 
that integrates Aspen Plus with Microsoft Excel, a method developed by 
Srinivas and Rangaiah (Srinivas and Rangaiah, 2007b). In this setup, the 
DETL algorithm is programmed in Visual Basic within Excel, while the 
separation process model is simulated using Aspen Plus. Initially, deci
sion variable vectors are transferred from Excel to Aspen Plus via Dy
namic Data Exchange (DDE). These variables are then applied to the 
process model in Aspen Plus. Once the simulation is complete, Aspen 
Plus sends the resulting output data—such as flow rates, purity levels, 
and reboiler heat duty—back to Excel. Excel then evaluates these out
puts against the objective function and adjusts the decision variables 
based on the DETL algorithm. For the optimization, the following pa
rameters were used: 200 individuals, a maximum of 1000 generations, a 
tabu list size of 50 % of the total population, a tabu radius of 1 × 10⁻⁶, 

Table 3 
Decision variables in the multiobjective optimization problem.

Type of Variable Search Range

Number of Stages Discrete 5–100
Feed Stages Discrete 4–99
Reactive stages range Discrete 4–99
Reflux Ratio Continuous 0.1–5
Bottoms Rate Continuous 3.5–4 (kmol h− 1)
Diameter Continuous 0.9–5 (meters)
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and crossover and mutation rates of 0.8 and 0.6, respectively. These 
settings were derived from existing literature and preliminary tuning 
studies (Srinivas and Rangaiah, 2017). Decision variables such as reflux 
ratio, reboiler duty, feed stage locations, and catalyst distribution are 
identified and optimized with respect to a multi-objective function that 
incorporates economic, environmental, and operational goals (See 
Table 3).

The search ranges for the optimization algorithm were established 
based on several key considerations. For the equipment topology, 
including stages and diameter, the ranges were informed by recom
mendations found in the literature (Douglas, 1988; Górak and Olujic, 
2014). These values are commonly used in industry and have been 
adapted to the context of this study. For the mass and energy balance 
parameters, such as top and bottom flows and reflux ratio, the search 
limits were determined by considering the characteristics of the feed 
streams and the performance metrics of conventional GVL production 
processes, with an extension of the ranges to allow for potential im
provements in performance.

Using a narrower range of variables could have resulted in the 
optimization algorithm finding suboptimal solutions, as it might have 
limited the search space and prevented the identification of improve
ments in the GVL production process. On the other hand, expanding the 
search range excessively could lead to a larger, more complex search 
space, increasing the risk of the optimization failing to converge to a 
feasible and efficient solution. Therefore, the selected search range 
strikes a balance between providing sufficient flexibility to explore im
provements and maintaining the focus on a feasible solution space that 
ensures the model converges effectively.

To calculate the hold-up in cubic meters of a reactive distillation 
column as a function of its diameter, the model represented in Eq. (5) is 
used. 

Hold up =
π
4
∗ d2 ∗ 0.1524 ∗ 0.9 (5) 

This equation is used to estimate the volume of liquid retained in the 
column, where d is the diameter of the column in meters, 0.1524 is a 
conversion factor that converts the diameter to the cross-sectional area 
in square feet, 0.9 represents the fraction of the column’s volume 
occupied by the liquid (Kong et al., 2025; Sánchez-Ramírez et al., 2024).

The optimization process begins with the empirically derived values 
as the initial population, guiding the algorithm toward feasible regions 
of the design space. Through iterative steps of mutation, crossover, and 
the application of the tabu list, the DETL algorithm explores the design 

space comprehensively, ensuring a robust search for the global optimum 
while avoiding local minima.

Then, considering the performance indicators previously shown, the 
objective function was defined as follows (Eq. (6)). 

Min(TAC, EI99) = f(Ntn,Nfn,Rrn, Frn,Rsn,Dcn) (6) 

Subject tox→
m > y→

m 

Where Ntn is the total number of column stages, Nfn is the feed stages 
in the column, Rrn is the reflux ratio, Frn is the distillate/bottoms flux, Rsn 
is the reactive stages, and Dcn is the column diameter. ym and xm are the 
vectors of both obtained and required purities for the mth components, 
respectively. The minimum purity targets were fixed as 98.5 %wt for 
GVL. The parameters used for the optimization process were: 200 in
dividuals, 1000 maximum number of generations, a taboo list of 50 % of 
total individuals, a taboo radius of 1 × 10− 6, 0.8 and 0.6 for crossover 
probability and mutation factor, respectively. These parameters were 
obtained from the literature and tuning process via preliminary calcu
lations for this kind of complex models (Sánchez-Ramírez et al., 2024; 
Srinivas and Rangaiah, 2007a; Vázquez-Castillo et al., 2019).

In the optimization process, penalties are applied to ensure the 
feasibility and robustness of the results. These penalties are incorporated 
at various stages of the stochastic optimization algorithm to address 
potential issues that may arise during the simulation. One of the primary 
penalties is applied when violations of material or energy balances are 
detected, leading to convergence errors. Such issues typically arise when 
the simulator identifies discrepancies in the results, signaling the need 
for corrections. Additionally, penalties are imposed when the purity 
requirements for specific components are not met. Even in cases where 
the model converges without errors, failure to meet these purity speci
fications results in a penalty, emphasizing the importance of achieving 
the desired product quality. Moreover, hydraulic-related issues, such as 
pressure errors or plate flooding, are also considered in the optimization 
process. When the simulator detects such hydraulic anomalies, corre
sponding penalties are applied to prevent the optimization from 
converging to unfeasible operating conditions. This ensures that the 
process is not only optimized for economic and environmental perfor
mance but also adheres to the necessary hydraulic constraints.

Thus, the optimization process guarantees that the resulting design 
solutions are both reproducible and feasible, meeting the established 
recovery and purity requirements while avoiding unfeasible operating 
conditions related to the internal hydraulics and pressure profiles of the 
system.

Fig. 4. Experimental (red) and predicted (blue) outflows in the reactor.
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5. Results

The following section will show the results ordered according to the 
methodology shown. We will start with the results obtained concerning 
the reaction kinetics and continue with the results obtained in the design 
and optimization of the reactive distillation column. Finally, a com
parison will be made between the data previously reported for the 
conventional technology and the results obtained in this proposal.

5.1. Kinetic results

Following the methodology previously published by 
Sánchez-Ramírez et al. (2022), and aided by the experimental data 
published by (Hengne and Rode, 2012), the behavior presented in Fig. 4
and Table 4 was obtained.

According to Fig. 3, the difference between the results predicted with 
the help of the simulator compared to the experimental results is 
imperceptible. In that sense, it can be considered that the kinetic data 
found using the methodology of section 4.1 are adequate. In that sense, 
Table 4 shows the kinetic data for both modeled reactions.

5.2. Process optimization

As mentioned in section 4.2, using the stochastic hybrid optimization 
method Differential Evolution with Tabu List, a reactive column alter
native for GVL production was obtained. As a result of minimizing the 
total annual cost (TAC), and the Eco Indicator 99 (EI99), a Pareto front 
was achieved as shown in Fig. 4. Note that all the designs present in the 
Pareto front of Fig. 5, satisfactorily comply with the GVL purity 
constraints.

In the optimization process, both the Total Annual Cost (TAC) and 
the Environmental Impact (EI99) are minimized, reflecting a clear trade- 
off between these two objectives. Several authors have reported this 
tendency when this kind of objective are considered (Berhane et al., 
2009; Carvalho et al., 2012; Ponce-Ortega et al., 2011; van Elzakker 
et al., 2017; Wu et al., 2015). Minimizing capital costs often leads to the 
selection of smaller equipment designs, such as columns with fewer 
stages and smaller diameters. While this reduces upfront costs, it can 

lead to higher operational demands, such as increased reflux ratios or 
reboiler duties, increasing services cost. Similarly, minimizing envi
ronmental impact, as represented by the EI99 metric, requires balancing 
the energy and material use, particularly the steel required for con
struction. A process designed to minimize steel usage may lead to an 
increase in energy consumption, which in turn raises the environmental 
impact, and vice versa.

The Pareto front reflects this trade-off, presenting a range of optimal 
solutions where both objectives are minimized, even though improving 
one objective may result in an increase in the other. However, a small 
region at the bottom-right of the Pareto front shows an increase in both 
TAC and EI99 simultaneously. Although this region may appear to 
present a trivial solution, it is important to emphasize that the lowest 
values of EI99 do not occur in this area. This suggests that while this 
region does not represent an optimal solution, it still contains non- 
dominated solutions, which is consistent with the nature of the Pareto 
front.

The apparent trivial behavior observed in this region is likely due to 
its proximity to the optimal zone. The optimization model, which in
corporates complex equations for material balances, thermodynamic 
equilibrium, energy balances, and chemical reaction modeling, is highly 
nonlinear and potentially non-convex. As a result, multiple local optima 
may exist, and it is not unexpected to encounter regions with different 
behaviors, particularly near the optimal solution. Therefore, although 
the region where both TAC and EI99 increase does not exhibit the same 
clear trade-off as other regions of the Pareto front, it remains a valid, 
non-dominated solution. It is part of the front because it reflects the 
complexity of the model and the inherent trade-offs captured during the 
optimization process.

On the Pareto front of Fig. 2, only non-dominated solutions are 
presented. The Pareto fronts are shown in 2D for better understanding 
and to be able to observe the trends of the objective functions. In most 
cases, the presence of a minimum in any objective function is present 
within the highest values of another function and vice versa. Broadly 
speaking, within a multi-objective optimization framework, deter
mining the optimal sequence can pose challenges. Hence, the objective 
of this study is to offer a more comprehensive perspective on selecting 
the optimal design using a normalization technique. By normalizing the 
various objective, it becomes feasible to pinpoint the sequence that 
aligns best with sustainability principles. Koski (1985) proposed the 
following method for normalizing the objective functions: 

fi(x) =
Fi(x) − minFi(x)

maxFi(x) − minFi(x)
i = funcion objetivo, X ∈ NP (7) 

When considering points as vectors originating from the origin 

Table 4 
Kinetic parameters for GVL production process.

Reaction k E (cal/mol)

CH2O2→H2 + CO2 29,513.430 3399.005
C5H8O3 +H2→ C5H8O2+H2O 552.581 1703.585

Fig. 5. Pareto front for the reactive distillation column for GVL production.
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within a plane or space, it becomes feasible to compute the magnitude of 
these vectors to identify the one that approaches the minimization of 
both coordinates. By utilizing the Pythagorean Theorem, the Euclidean 
distance can be generally computed as follows: 

Distance =

̅̅̅̅̅̅̅̅̅̅̅̅̅

∑i=NF

i=1
f2

i

√
√
√
√ ,NF = Number of objective functions. (8) 

By employing this approach of overarching selection criteria, the 
multiobjective optimization challenge transforms into refining a scalar 
value to pick the most optimal solution. The advantage of employing 
normalization lies in its ability to indicate the extent of separation be
tween the optimum of an objective function in one sequence compared 
to the optimum of the same objective function in another sequence. In 
essence, it quantifies the deviation from the ideals of a sustainable 
process.

From the resulting Pareto front, it is possible to select a balanced 
solution for both objectives. That is, it is possible to select a design in the 
zone where the lowest values are found for the total annual cost (TAC) 
and for eco-indicator 99 (EI99). In this sense, Fig. 5 shows a red dot, 
which represents a design with these characteristics whose design pa
rameters can be seen in Table 5. For the distillation columns the number 
of theoretical stages was converted to actual stages using the overall 
efficiency expression developed by Peters et al. (2002).

The search ranges for the optimization algorithm were established 
based on several key considerations. For the equipment topology, 
including stages and diameter, the ranges were informed by recom
mendations found in the literature (Douglas, 1988; Górak and Olujic, 
2014). These values are commonly used in industry and have been 

adapted to the context of this study. For the mass and energy balance 
parameters, such as top and bottom flows and reflux ratio, the search 
limits were determined by considering the characteristics of the feed 
streams and the performance metrics of conventional GVL production 
processes, with an extension of the ranges to allow for potential im
provements in performance.

Using a narrower range of variables could have resulted in the 
optimization algorithm finding suboptimal solutions, as it might have 
limited the search space and prevented the identification of improve
ments in the GVL production process. On the other hand, expanding the 
search range excessively could lead to a larger, more complex search 
space, increasing the risk of the optimization failing to converge to a 
feasible and efficient solution. Therefore, the selected search range 
strikes a balance between providing sufficient flexibility to explore im
provements and maintaining the focus on a feasible solution space that 
ensures the model converges effectively.

Table 5 
Optimal design parameter of the reactive distillation for GVL production.

Reactive Column

Number of stages 12 Distillate flowrate (kmol h¡1) 12.645
Reflux ratio 0.322 Bottoms flowrate (kmol h¡1) 3.981
Feed stage 5 and 9 Condenser duty (kcal h¡1) − 15.664
Reactive stages 5–9 Reboiler duty (Watt) 9.893
Hold Up (cum) 0.668 Operative pressure (kPa) 101.32
Overall Efficiency 0.83 GVL production (kmol/h) 3.9688

Fig. 6. Molar composition profile at the reactive distillation column for GVL production.

Fig. 7. Flowsheet of the reactive distillation column.
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Likewise, the composition profile in Fig. 6 shows the molar compo
sition profile that was presented inside the reactive distillation column, 
and Fig. 7a complete flowsheet of the intensified alternative.

5.3. Comparison of technologies for GVL production

Immediately, it is possible to make a comparison in terms of the 
indicators evaluated in the objective function. However, it is also 
possible to make a comparison on some other indicators, e.g. the amount 
of GVL produced, the thermal load of the process, etc. Initially, an 
important difference is the amount of equipment involved in the pro
duction of GVL. In the process published by Caceres et al. (2024), three 
pieces of equipment are required to produce GVL, a reactor, a flash 
distiller, and a conventional distillation column. On the other hand, in 
the proposal presented in this work, the production of GVL is carried out 
using only a reactive distillation column. In this sense, Fig. 8 shows the 
comparison between the different types.

Fig. 8 shows a significant improvement in all performance indexes 
between conventional and intensified technology. The improvement 
could be expected considering that in the conventional production 
sequence, three pieces of equipment are involved, while in the intensi
fied sequence only one. Thus, the improvement between the two alter
natives can be quantitatively compared. For example, the TAC of the 
intensified sequence represents 43 % of the TAC of the conventional 
scheme. The EI99 of the intensified scheme represents only 45 % of the 
conventional scheme. Finally, the energy demand of the intensified 
scheme represents 37 % of the demand of the conventional process. A 
highly relevant aspect is the amount of GVL generated with the required 
purity. Although at the outlet of the reactor of the conventional scheme a 
quantity of GVL is obtained just below that obtained in the intensified 
scheme, this effluent still has to be purified. Thus, the production of GVL 
in the intensified scheme is considerably higher (25 %) than that ob
tained in the conventional design.

6. Conclusions

This study has successfully introduced an intensified process for the 
production of γ-valerolactone (GVL) through the use of a reactive 
distillation column. The analysis, conducted within a multi-objective 
optimization framework, demonstrates that this advanced approach 
yields significant improvements over a previously established conven
tional scheme.

The intensified process, characterized by its integration of a single 
unit operation as opposed to the conventional three-equipment setup, 
achieved noteworthy enhancements in GVL production efficiency and 

overall performance. Notably, the energy consumption of the intensified 
process is reduced to just 37 % of that required by the conventional 
scheme. This reduction is a direct testament to the process’s efficiency 
and sustainability. These results reflect a successful application of In
dustry 4.0 principles, particularly in terms of process integration and 
optimization. By leveraging advanced technologies such as reactive 
distillation, the study aligns with the goals of Industry 4.0, which 
emphasize increased automation, enhanced efficiency, and reduced 
resource consumption. The findings underscore the potential for such 
intensified processes to drive significant advancements in industrial 
practices, promoting both economic and environmental benefits in line 
with modern industrial paradigms.
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Romero-Izquierdo, A.G., Gómez-Castro, F.I., Gutiérrez-Antonio, C., Hernández, S., 
Errico, M., 2021. Intensification of the alcohol-to-jet process to produce renewable 
aviation fuel. Chem. Eng. Process. Process. Intensif. 160, 108270. https://doi.org/ 
10.1016/J.CEP.2020.108270.

Sánchez-Ramírez, E., Huerta-Rosas, B., Quiroz-Ramírez, J.J., Suárez-Toriello, V.A., 
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